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Introduction 

An equation of the Fokker--Planck type is widely used to describe the kinetics of nonequi- 
librium processes in gases. When this equation is applied to systems with considerable gradi- 
ents of distribution functions and of transition instants an additional estimate is required 
of the conditions under which the linear integrodifferential equation is approximated by an 
equation of the Fokker-Planck type. The replacement of the corresponding integral operator 
by a differential one was analyzed in many articles (see, for example, [1-3]); the finite 
expansion was then valid for the distribution function as well as an estimate of the order 
of magnitude of the terms which follow the transition instants. For strongly nonequilibrium 
processes and for the time instants t < rr (rr is the characteristic relaxation time) the de- 
gree of deviation from the equilibrium should be included in the estimate of approximation 
conditions. 

In the present article the exchange is described of the integral operator by a differ- 
ential one; the operators not being for the distribution function itself but for the ratio 
to the equilibrium value (the relaxation of the initial distribution being in the form of a 
S-function is not analyzed). In a number of cases such an expansion enables one at the non- 
equilibrium or near-equilibrium stages to reduce the sought approximation conditions to the 
conditions for the transition instants (this is especially suitable if the transition in- 
stants are evaluated without using the explicit form for the transition instants), and con- 
tains transition instants of only the even order since their evaluation is more straightfor- 
ward than the evaluation for instants of any order; finally, there is a more obvious possi- 
bility of estimating the order of magnitude of the neglected terms and of the accuracy needed 
for the retained terms. The approach used in [4] was applied to obtain the relevant expan- 
sion. 

i. Transition to Differential Equation. Expression for Divergence Flow. General Flow 
of the Approximation Conditions 

The starting kinetic ~quation, similarly as in [4], is written in the form 

o-7=- /(x, t)W(x,A)dA~ / ( x_A ,  OW(z+A,--a)d~, .  (1.1) 

where f(x, t) is the distribution function of the molecules with respect to x (either the 
energy or the momentum corresponding to the specified degree of freedom) in the gas, playing 
the part of a thermostat with temperature T; the gas-thermostat is of much higher concentra- 
tion than that of the molecules; A is the change of x due to collision; W(x, A) is the transition 
probability for the molecule from the state (x) to (x + A) in a unit of time. The following 
notation is now introduced: 

Ba= <An>~ = ~ AnW(x' A) dA' 4=x =fW(x'A) dA; (1.2) 

~(x, t) = f(x, Oq~ $(x, t) = O+'Ox; (1.3) 

+(x, A) =/~ ~), (1.4) 

where f~ is the equilibrium distribution function corresponding to the temperature T(t +~); 
B n is the transition instant of order n. 

It follows from the principle of comprehensive balance =hat 

0)(x, A) = ~(x + A, --A), +(x, --A) = ~(x -- A, • (1.5) 
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By using (1.5), Eq. (i.i) can be written as 

0,~ = ~ [~ (~ + a ,  t) - ~ (~, t)l o) (x, a )  ~ •  (1.6) 

From (1..6) 
series one finds 

The quantity B=n_xf ~ is now expressed in terms of Ban f~ Having expanded 
hand sides of (1.5) into a series of the powers of A, appearing in the first 
tains 

X I d~o) (x, A) ~ 1 d~o,%, A) : - -  , . 

d.~ = _ ~ ~-?(--Z) ~ d ~  , ~=l  

i ~ i A~ d~xo(x,--A) i [~o (x, A) ' o) (x, - 3)1 :' ~ . ~  ~ d= ~ o (x ,  A) = Z" 

and taking into account (1.2)-(1.5) and having expanded q(x + A, t) into a 

( 1 . 7 )  

the right- 
argument, one oh- 

(1 .8 )  

(1 .9 )  

It follows from (1.9) by taking into account (1.8) that 

o> (x, A) = : [o) (x, A) ' o) (x, - a) l  - 2 h ~  .:  d ~  ~ ( - -  t)kA h 
=7- = 

Employing (I.i0) together with (1.2) one finds 

B:':-"f~ = ~I A2"-~~ (x, A) dA -- '21 ~ ~ (-k! 1)~ d.r'~ <P • 

ff _ --i@': [ /~,/ ( - - l j  h - I  d h :~ _X ~ ~ o~ ( z ,  .X) d A  = .17 ~! (B2,,-~+~/~ 
~: = 1 dxh 

( I . l O )  

(1.zI) 

[the 
Then 

result (i.ii) is due to the fact that integration takes place over symmetrical intervals]. 
tke lower summation limit increases step by step, 

B 2 ~ _ d o  I d ( B . , / o )  t X '  ( _  1/~-~ I ~ ~ 
2 dx " - ~ ,dJ k! ctx~B2n i+k/~ 

h=2 
d h 

�9 ~1 d~d (B.~o)_. , _ : _ _ ( _ . ~  ~X' 1 ' ~ - ~ j  ~k~ ].T~(B-~,~-~+k/~ 
" h=2 

B.~n__ l/O - 1 d 1 ( 1 \ d3 t D "0" ' 
- 2 dx (B2"f~ 7'_ ,C~2 - -  T C ~ , , _ ) ~ t ~ , 2 n + 2 l  ~ 

2 " - --Z-(~-'-')---~. (-- l )k -~  B2'~--~+h/~ 

= 2 dz - -  W .-~ ,~., -- -~_ C._,~ ~ =2- , C~4 ~ (B2,,-,+~/~ 
h=6 

can be continued. In this way one obtains 

d-Z"z" " ~:) "0" i ~ (B.,,,/o) . Z Ao~ ~ (/J",:+2d); B 2 , , - t  = ~ 

---- t o -- ] C2s,2s~, A2~ =2- (C2~+~,-~ T ] 

and the procedure 

where 

(1.12) 

(1.13) 

i i C2h--2 '2k--2  " ( i .  14) 
Cm2--~-n-~-!; C2m~2k = C 2 m , 2 k - - 2  2 ( 2 m - - 2 k + 2 ) l  ' 

The coefficients Cam+, 2m and 

I C2h--2,2k--2 
C2m+i'2k : C2ra--i'2k--2 2 (2m--2k-ff3)l " 

C~m, 2m are related by 

n~ 
C2m+i,2m = 2m--+ i C2~,2m. (1.15) 
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Using (1.13)-(1.15) one obtains from (1,12) that 

I s_~ ~ d 2s+t 
B2n-I ~" ]'--~" A2s ~ (B2nT2s/~ ' ( 1 . 1 6 )  

where 

i l C �9 
Ao = -5-; A ~  = 4 (2s + i) 2~,2,, 

for C2s,2 s one has the recurrence formula (1.14). The values of the first coefficients A2s 
are given by 

t i 3 t7 155 
A o = ~ ,  A, .= 4 ! '  A~=-O-F, A G =  81 ' A s = ~ "  

The relation (1.16) enables one to express the transition instant of an odd order in 
terms of the instants of higher even orders; in particular, it follows from the latter that 
B2n-, and B2n are of the same order of magnitude (excluding singular conditions). 

By using (1.16) one can transform Eq. (1.7) into a differential equation of the order 
2n which is equivalent to (I.i): 

0f _ _ n ~ l [  t 02,~_1 ~ n - - l~  A2 s 02n_2s_2r ] ( 1 . 1 7 )  
at = ~ B z n / ~  Ox2n--I ' *=0 ~ ( 2 n - - 2 s - - l ) !  8x 2n-2s-2 dxZ*+ - - - - - f  j" 

If all terms with n ~ 2 are neglected in (i.17), then an equation of the Fokker--Planck type 
is obtained. However, to determine the approximation conditions it is more convenient to 
s=art with the equation in its divergence form. 

After some transformations which are omitted here (1.17) can be reduced to 

ol o ' ~  t _ L _ .  io ~2,~-2, 
2n-- 1 

02n--h-- 1~ dh--I 

Ox Ox2n--h - 1  dx h - I  
n=2 h=2 

(1.18) 

D,z:21~ = -- D,~.2~+i, D,l~ = ( - -  1) h ( i 
�9 ( 2 n ) !  ~ 

A2~ - -  is an integral part of -~-. 
7- ( 2 n - - 2 s - -  l)l ' 

s=0 

By u s i n g  ( 1 . 1 8 )  and  ( 1 . 1 9 )  t h e  s t a r t i n g  i n t e g r o d i f f e r e n t i a l  e q u a t i o n  ( 1 . 1 )  c a n  be  w r i t t e n  
in the divergence form 

0f -- div j; Ot 
~-- i 

E c,+ Z Hn m ; 
n=2 m= t ) 

Gn = D,I 02n-2r B2n]~ 
Ox2n--2 

[ 02n--m-- t1~ d2m--t 
Hn,2~ ---- D,mm , ~ ~ (Bv~/~ 

Lo~- - 
d2m o O')n--2m--2~Pd-~.m (B.,.n/ ) ]; 

Ox2n--2m--2 

( 1 . 20 )  

( 1 . 2 1 )  

( 1 . 2 2 )  

( 1 . 2 3 )  

m--i 

i A2m--2 _ i E A2s (i. 24) 
D , ~ I =  ~ ,  D,~o= --D,~I, D~,2m =D~,2m-2 ~ ( 2 n - - 2 m + t ) !  ~ + 7770 (2n - -  2s - -  l)! " = 

It follows from (1.20) and (1.21) that a kinetic equation changes into an equation of 
the Fokker-Planck type if in the expression for the divergence flow one term only is retained, 
G,. This requires that the condition 

be satisfied, and it is sufficient that the inequality 

]Gal>>]G2I+IHo.I, IG,~t '-- ]~a Ha,era > > l G n + t [ +  n ' m=i =i Hn+l,2rn , > 2 (i. 26) 

be satisfied. 
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The relations (1.25) and (1.26) together with (1.22)-(1.24) describe in a general form 
the sought approximation conditions. The latter depend on the transition instants as well 
as their functional dependence, and also on the type of the deviation of the distribution 
function from the equilibrium one. 

The expressions are now given for the first three coefficients Dn,=m, m= !, 2, 3, and also a 
semiempirical formula to estimate the subsequent ones (n _> m + i), 

n - - i  cn - - l ) [n (2n- - l )  1] 
D'~2 = ~ '  D " 4 - ~ - -  (2n)l [ 6 

n-- i2_ 1 [ (2n -- 3)(2n -- 4) ] 
D,~ =.~ , 4! (2n--3)! ' 10 -- i , 

m - - t  
n - - t  t ~ (--l)Sq s-I  

Dn'2m~- (2n)! 4! ~ ~= (2n--2s--l)l ' q--~---O.iOl3, ~n~>4; 

the last formula follows from (1.24) if one adopts A2m/Aam- = =--q = const; in fact, the ratio 
q varies very little, for example, from 0.10131 for m = 4 to q = 0.10132 for m = 20. 

2. Approximation Conditions and Transition Instant Features for Rayleigh Gases 

To give an example, the approximation conditions are analyzed of divergence flow by 
means of a single term in the case of relaxation of a comparatively "hot" Rayleigh gas, that 
is, in the case of a small admixture of heavy particles to the medium light atoms of the 
thermostat; ma/m~ = X << 1 (mx is the particle mass, m= is the atomic mass). It is assumed 
that the initial particle distribution with respect to energy is a Boltzmann onewith tempera- 
ture To, where To >>T, i.e., 

2 1#7 
( 2 . 1 )  

x = mlv=x/2, vx is particle velocity, n I =~f(x, O)dx---- /(x, t)dx is particle concentration. By 
0 o0 

confining our considerations to the initial essentially nonequilibrium relaxation stage dis- 
tribution and by using (2.1)% for the instants t < T r one may set 

"•i( Of O ln/o ~ ~ 
= ~ -/-sv-~ ) - ~-~, 

O~,/Ox~ ~__ ,/(kT)L 

x > k r ;  (2 .2)  

(2 .3)  

to the variable y = x/kT and by using (2.3) one obtains $ By changing in (1.20)-(1.23) 

where 

kT 0__~/= --div ] (y); 
at 

n - - I  

- - ] ( V )  = Z C~(V) + ,~ ,~,2mW] I, 

(2.4) 

(2.5) 

i B 
Gn (Y) -- (2n)! 0y ' ( ~ , i / o  (V) ~ (y), ~ ( y )  8q) (x ,  t). (2 .6 )  

~>~m-. i' B:, /o (y) _ /o Hn,2m (Y) = Dn,em~ (Y) ~ \(kT)2 n dy \(kT)2n (Y) ." (2 .7)  

The a p p r o x i m a t i o n  c o n d i t i o n s  ( 1 . 2 5 ) ,  (1 .26)  t o g e t h e r  w i t h  (2 .6)  and (2 .7 )  depend on the  
properties Ban of the transition instants (and on the thermostat temperature); in particular, 
(1.25) with fo ~ ~ye-Y taken into account as well as (2.6) and (2.7) assumes the form 

*The initial distribution need not be a Boltzmann one; it is important, however, that the ap- 
proximation (2.2) be valid. 

~Since (2.2) and ~2.3) are approximations we leave n, terms in the sum with respect to n; 
(1.20)-(1.23) is not strongly equivalent to (i.i) for the problem under Consideration because 
of lack of symmetry in the integration limits; the latter can, however, be ignored for x > kT 
(x >> 2<A2>). 

605 



' +---_ (2.8) 
2 (kT)~ >> (~J! (kT) 2n [ Y  m=i dy' \ (kT) 2n \ ~ J / ]  | n = 2  s = 0  

(C~ a r e  b i n o m i a l  c o e f f i c i e n t s ) ;  m o r e o v e r ,  t h e  f i r s t  c o n d i t i o n  ( 1 . 2 6 )  b e c o m e s  

I B, i B4 (_ {)s+id~.\ V T - ~  dy \ ( ' ~ ] ]  " (2.9) 
2 (kT) ~ >> 4[ (kT)* +4I} y s=O 

Now the coefficients B2n, the transition instants for a Rayleigh gas, should be made 
more specific. The transition instant of the second order (n = i) has often been calculated 
when analyzing the relaxation of a Rayleigh gas, In [4]* this instant was evaluated in the 
first approximation in the ratio of the masses of atom and of particle, the computation being 
carried out for the general form of the interaction potential and also the coefficients B2 
being expressed in terms of quantities well known in the kinetic theory of gases. In [5] 
in the case of interaction exact values were obtained, according to the law of solid spheres 
for the first three transition instants, <5>, <A2>, and <53>; these instants were evaluated 
using the analytic expression obtained in the same parer for the probability ~W(x, A) which 
permits, in principle,~evaluation of instants of higher orders; however, for n > i this would 
be too cumbersome. 

It suffices for the purpose of this article to limit the computation to the same approxi- 
mation as in [4]; this approximation corresponds to the first-order computations in the per- 
turbation theory of the interactions for which the atom energy changes resulting from the 
collision with a particle can be disregarded. However, it was not specified in [4] what order 
of magnitude in I (~ or %) should have the rejected terms. 

Below using the kinetic theory [6] the pattern of computing the coefficients B2n is 
briefly described without using explicitly W(x, A), and it is shown that the exact evaluation 
of B2n should contain terms with I only of integer degree. Therefore, if in the first approxi- 
mation in the expression for B=n one takes into account the terms of the lowest degree l ~ X s, 
then the neglected terms are proportional to X k+s, k > i. The values are thus obtained of B2n 
in the first approximation. The approach described here enables one to evaluate the transi- 
tion instants with any approximation in %; such evaluations, however, are outside the scope 
of this article. 

To evaluate B2n one has to analyze the collision dynamics between a particle and an atom. 
The following notation is introduced; vx, px are the partielevelocity andmomentum; v~, p= 
are the atom velocity and momentum; g = v2 - vx; M = mxm=/(m~ + m2) = m2/(l + I). The energy 
change in the particle resulting from a collision is equal to 

A x - - ( A P J 2  ' (p~Apx) 
2m 1 t ml 

hpx = --Apt, APi is the change of momentum of the i-th particle due to collision, 

2n 

(Ax) 2'~ I Zm,) Z (2m*) ~ u_on (vlk)",  k - -  ( 2 . 1 0 )  Ap~" 
r=0 

It is further assumed that the collision dynamics corresponds to the case of interaction ac- 
cording to the law of solid spheres [6]. Then one has Ap2 = 2Mg cos 41, 4x = (i/2)(~--IX), 
where X is the scattering angle for collisions, 

<(Ax) 2n> -- I (Ax)2"dN' (2.11) 

where dN is the number of atoms whose velocity lies in the interval v2, v2 + dv~ scattered 
by the particle at an angle X, X + dx in a unit of time, 

dN = gl~ ( v J  dvfl~, 

where dc is the scatter section at an angle X~ X + dx; f~ = n2(m,/2nkT)~=e-m2v~/2kT; n2 is 
the concentration of atoms; for the interaction model under consideration one has 

*In fact, in [4] a wider problem was considered, namely, the relaxation of Rayleigh gas with 
rotatory degrees of freedom; in the approximation analyzed in [4] the translational and ro- 
tational relaxations proceed independently. 
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d N  = ga~2 cos *1 sin o 2 1~l/2Y 2 sin OdOd~ldedq~dv~; ( 2 . 1 2 )  

in the abow ~. ~ and e are the orbital and azimuthal angles of the vector k relative to g, and 

0 and ~ are the corresponding angles of the vector v2 relative to v,; $: varies from 0 to 
~/2; 0 from 0 to ~; r and ~ from - to 2~; ~= = (l[2)(ff~ + ffa), ~i is the diameter of the 

i-th sphere. 

In (2..12) one can change from the integration variable 8 to g: 

g~ = v~ -}- vZ~ - -  2vlv  2 cos O, gdg = /)lUv sin OdO, 

the integrauion limits wi~h respect to dg being from v~ -- v~ ~o v~ + vx for v~ > v~ and from 
v~ --v= to v= + v, for v= < v:. 

If one takes into account (2.10) and (2.12) the quantity (v,k) remains undetermined in 
(2.11) ; by codirecting the z axis with the vector g one obtains 

(vlk) = v 1 sin ct sin ~l cos ((p - -  e) @ vl cos ~l cos ct. ( 2 . 1 3 )  

v ~ -  2vxg cos  a one  f i n d s  By u s i n g  gZ = v~ + v~ - - 2 ( v , ( g  + v ~ ) )  = v~ --  

A 1 
c o ~  a ~ ( ~  - v~ - v~,) - -  , 

: 2gv I ~ ' " 2gv~ 

t h e  r e l a t i o n  (2o14)  e x p r e s s i n g  (vxk)  by means o f  t h e  v a r i a b l e s  g ,  v a ,  ~ ,  e ,  q~. 

Thus ,  one  o b t a i n s  f r o m  ( 2 . 1 1 )  t o g e t h e r  w i t h  ( 2 . 1 0 ) ,  ( 2 . 1 2 ) ,  and  ( 2 . 1 3 )  t h a t  

[4 r 
2n  [ t x~ 2~ 2 (~ 

B 1.5-~m~) 0"12 ~ ~ K,, (2~1)r J 0 . 'n-r . . . . . .  % = ]2g vi cos ~ " a sm 2 a - -  dr,f ig,  rs v l  
r ~ O  s = l  

(2.14) 

[r/2] is the integral part of r/2, (2,15) 

K ~  = C~C~ C O S ~ n - - 2 s + l l ] ) l  sin-' ' ~Pl cos2S (~ - -  s) d~ lded  % 
08A-~ 

I t  f o l l o w s  f r o m  t h e  i n t e g r a l  i n  ( 2 . 1 5 )  t h a t  i t  can  be  r e p r e s e n t e d  i n  t h e  fo rm ( t h e  s u p e r -  
s c r i p t s  l ,  k ,  and  m b e i n g  u n d e r s t o o d  f o r m a l l y )  

2h - 0  o I Vo om 21,~ I t (" 2hT u ~ m w l  , i_ e 2hV U~ ~ 8 2 | ,  v~ I2g" , v} dvedg = vi e g2'~dgdvz7 v~ " 
i v~'--th 0 vl--v~ J 

which can be reduced to the integrals 
;rzg 

~e_Zzkdzand__l_._  f _z~ x _ _  e dz, g = y - ~ ,  
];Xy d 

w h i ~  a r e  r a t i o n a l  f u n c t i o n s  o f  ky ,  t h a t  i s ,  c o n t a i n  o n l y  (%y)k,  k Z 0. Thus ,  B2n c o n t a i n s  
f i n a l l y  t e r = ~  w i t h  %k  k ~ 1,  o n l y .  The e ~ r e s s i o n  ( 2 . 1 5 )  t o g e t h e r  w i t h  ( 2 . 1 0 )  y i e l d s  e x a c t  
v a l u e s  o f  Ban.  

L e t  us c o n s i d e r  an  i n s t a n t  o f  t h e  z e r o t h  o r d e r ,  - - l / T ,  which  c o r r e s p o n d s  t o  t h e  c o l l i s i o n  
f r e q u e n ~  Px2 (v ~ )  o f  a p a r t i c l e  o f  v e l o c i t y  v ,  w i t h  a toms  and e q u a l  to  [6]  

{ ] Zg 

t __ 2n2o.22 (2akTli./2 e-).y \ m2 / @ (2)~g --  i) e-""dz 
0 

r 
~o T 0 ()~g) 

(to being the free path of the particle in the gas). 

The sought values of Ban can be obtained in the first approximation by setting g = v2, 
(vxk) = v~ cos y in (2.11) together with (2.10) and (2.12) and averaging cos ry over the 
sphere; this results in 

B2~ : ~b~,~y~ (kr)2~[ ~ + 0 ( Z ,  0~g)~)], ( 2 . 1 6 )  

__ n~ (i6k) ~ 
s, l ~ > i , b ~  2 ( 2 n + 1 ) '  Y > > n ( n 4 - 1 ) ( 2 n + l ) ~ ' "  
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By using (2.16) the condition (2.8) becomes 

i b ~ 1 --~ 2Y>> ~ b ~ n y  ~ l @ ( 2 n ) ! ~  D,  om ~_~ ( - - I v + i C  ~ hns 2 n - - 2 s + i .  ,_ j 2,~-i 2 - -  ( 2 . 1 7 )  
m=i s=0 y~ 2y 

w h e r e  i t  was  a s s u m e d  t h a t  ( d s y n + ~ 2 ) / d y  s - h n s y n + ( 1 / 2 ) - s ;  ( 2 . 1 7 )  i s  n o t  s t r i c t l y  e q u i v a l e n t  t o  
(2.8) since each n-th term of the series in (2.17) is determined with an accuracy up to X r, 
r >_ n + i. However, this relation shows that if on the right of (2.17) a considerable con- 
tribution is given by the terms with n <_ n,, then for a strict determination of necessary 
conditions for the approximation at the initial stage of the procedure one has to employ 
in (2.8) a value of B2n evaluated with an accuracy up to the terms ~X n*+~. 

The evaluation of B2n in (2.16) enables one to determine sufficient conditions of the 
approximaKion as well as to estimate the order of magnitude of the terms appearing in the 
divergence flow. 

These sufficient conditions for approximating the divergence flow by a single term [see 
(1.26)] correspond now to a requirement that the n-th term of the series in (2.17), in which 
the second term was taken in its modulus, be much bigger than the next (n+ l)-th term; the 
ter conditions enable one to obtain relations between the possible values of y and X; in par- 
ticular, one can obtain from them for the upper bound of the values of y (y >> i) for n >- 5, 
n 3 < y/% that y << 1/16% follows. If the considerations are limited to the condition (2.9) 
only together with (2.16) then one finds that the Fokke~-Planck term is much bigger than the 
next one for y << 1/l. 

It also follows from (2.4)-(2.7) together with (2.16) that each subsequent term in the 
divergence flow relative to the preceding one is of the order of ~l and in the equation of 
Fokker--Planck type of coefficient B2 is, as a rule, sufficient for evaluating with anaccuracy 
up to %, B2 = (8/3~o)%y(kT) 2, since the neglected terms in the equation are of the order B2n~ 
%n, a > 2. 
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